#### ver. "2017-09-05 15:56:43 CEST"
# perform 2 sample test of x
mytest <- function(x, y, R = 1000){
library(cluster)
library(fda.usc)
if( is.factor(x) ){
d1 = daisy(as.data.frame(x))
}
if( is.numeric(x) ){
d1 = daisy(as.data.frame(x))
}
if( is.fdata(x) ){
d1 = metric.lp(x)
}
ct <- eqdist.etest(d1, summary(y), distance=T , method = "discoB", R = R)
if ( !is.na(ct$statistic) ){
ct$p.value
} else{
NA
}
}
mytest2 <- function(x, y, R = 1000){
library(cluster)
library(fda.usc)
if( is.factor(x) ){
d1 = daisy(as.data.frame(x))
}
if( is.numeric(x) ){
d1 = daisy(as.data.frame(x))
}
if( is.fdata(x) ){
d1 = metric.lp(x)
}
ct <- eqdist.etest(d1, summary(y), distance=T , method = "discoB", R = R)
if ( !is.na(ct$statistic) ){
return(c(ct$statistic, ct$p.value))
} else{
NA
}
}
##test for split nominal variables
##perform chi-squared test of yvs.x
mychisqtest<-function(x,y){
x <- factor(x)
if(length(levels(x))<2)return(NA)
ct <- suppressWarnings(chisq.test(table(y,x), correct = FALSE))
pchisq(ct$statistic, ct$parameter, log = TRUE, lower.tail = FALSE)
}
####
# See sample()'s surprise -- example in help file
resample <- function(x, ...) x[sample.int(length(x), ...)]
####
mytree <- function(group, data, weights = NULL,
minbucket = 1,
alpha = 0.05, R = 1000,
rnd.sel = T, rnd.splt = TRUE, nb=5) {
# name of the response variable
#response <- all.vars(formula)[1]
response <- data[[which(names(data)==group)]]
index <- order(response)
#names(response)=rownames(data$V2$data)
# data without missing values, response comes last
#data <- data[ complete.cases(data), c(all.vars(terms(formula, data = data))[-1], response) ]
if ( is.null(weights) ) weights <- rep(1L,length(response))
n.var <- which(names(data)!=group)
# weights are case weights, i.e.,integers
#stopifnot( length(weights) == nrow(data) &
# max( abs(weights - floor(weights)) ) < .Machine$double.eps )
datanew <- list("class"=response[index])
for(j in n.var){
if(class(data[[j]])=="fdata")
foo <- min.basis(data[[j]][index], numbasis = nb)
fd3 <- fdata2fd(foo$fdata.est, type.basis = "bspline", nbasis = foo$numbasis.opt)
foo$coef <- t(fd3$coefs)
datanew[[j]] <- foo
}
names(datanew) <- names(data)
# growtree
nodes <- growtree( id = 1L, response=datanew$class, data = datanew, weights,
minbucket = minbucket,
alpha = alpha, R = R,
rnd.sel = rnd.sel, rnd.splt = rnd.splt,
n.var = n.var)
# compute terminal node number for each observation
response <- response[index]
response=data.frame(response)
y=response
m.coef <- c()
for(j in n.var){
foo <- datanew[[j]]$coef
colnames(foo) <- paste(names(data)[j], colnames(datanew[[j]]$coef), sep = ".")
m.coef <- cbind(m.coef,foo)
}
data1=cbind(response,m.coef)
m.coef=m.coef[order(index),]
data1=data1[order(index),]
fitted <- fitted_node(nodes, data = data.frame(m.coef))
formula=response~.
# return rich constparty object
ret <- party(nodes, data = data.frame(m.coef),
fitted = data.frame("(fitted)" = fitted,
"(response)" = data1$response,
"(weights)" = weights,
check.names = FALSE),
terms = terms(formula,data=data1)
)
as.constparty(ret)
}
####
growtree <- function(id=1L, response, data, weights,
minbucket,
alpha, R,
rnd.sel, rnd.splt,n.var) {
# for less than <minbucket> observations stop here (for ctree() is 7 in ?ctree_control)
if (sum(weights) <= minbucket) return( partynode(id = id) )
# Preventive stop :: if the best split would create small children, stop here
yt <- table(as.factor( rep(response, weights) ) )
#if (any(yt <= minbucket)) return( partynode(id = id) )
if(length(which(yt==0))+1==length(levels(response))) return( partynode(id = id) )
# find best split
res <- findsplit( response, data, weights,
alpha = alpha, R = R,
rnd.sel = rnd.sel, rnd.splt = rnd.splt,
n.var = n.var )
sp <- res$sp
varselect <- res$varselect
# no split found, stop here
if (is.null(sp)) return( partynode(id = id) )
# actually split the data
#kidids <- kidids_split(sp, data = data)
kidids <- c()
kidids[which(data[[varselect]]$coef[,sp$varid]<=sp$breaks)] <- 1
kidids[which(data[[varselect]]$coef[,sp$varid]>sp$breaks)] <- 2
if(all(kidids==1) | all(kidids==2)) return( partynode(id = id) )
sum1 <- length(which(data[[varselect]]$coef[which(weights==1),
sp$varid]<=sp$breaks))
sum2 <- length(which(data[[varselect]]$coef[which(weights==1),
sp$varid]>sp$breaks))
if(sum1 == 0 | sum2 == 0) return( partynode(id = id) )
nb=0
for(i in n.var){
k=data[[i]]$numbasis.opt
nb=c(nb,k)
}
if(varselect!=min(n.var)){
step=sum(nb[1:(max(n.var[which(n.var<varselect)]))])
sp$varid=sp$varid+as.integer(step)
}
# setup all daugther nodes
kids <- vector(mode = "list", length = max(kidids, na.rm = TRUE) )
for ( kidid in 1:length(kids) ){
# select observations for current node
w <- weights
w[kidids != kidid] <- 0
# get next node id
if(kidid > 1){
myid <- max( nodeids( kids[[kidid - 1]] ) )
} else{
myid <- id
}
# Start recursion on this daugther node
kids[[kidid]] <- growtree( id = as.integer(myid + 1), response, data, w,
minbucket,
alpha, R,
rnd.sel, rnd.splt , n.var = n.var)
}
# return nodes
return( partynode( id = as.integer(id), split = sp, kids = kids,
info = list( p.value = min( info_split(sp)$p.value, na.rm = TRUE ) )
) )
}
####
findsplit <- function( response, data, weights,
alpha, R,
rnd.sel, rnd.splt, n.var ) {
# extract response values from data / as.factor retains all levels
y <- response[which(weights==1)]
# something to split?
#if (!all(summary(y) > 0)) return(NULL)
#data1 <- data[which(weights==1),]
#data <- data1[ order(rep(group, weights)), ] # stack vals for each class one under the other
#val <- val[which(weights==1)]
#xselect <- which( names(data) != response )
#p <- sapply( xselect, function(i) mytest( data[[ i ]], y, R = R) )
#names(p) <- names(data)[ xselect ]
#p <- mytest(x=data,y=y,R=R)
p <- matrix(NA, nrow = length(n.var), ncol=2)
colnames(p) <- c("statistic","p-value")
p=sapply(n.var,function(i)mytest2(x=data[[i]]$fdata.est[which(weights==1)],y=y,R=R))
# Bonferroni-adjusted p-value small enough?
if ( all(is.na(p[2,])) ) return(NULL)
minp <- min(p[2,], na.rm = TRUE)
minp <- 1 - (1 - minp)^sum( !is.na(p[2,]) )
if ( minp > alpha ) return(NULL)
# for selected variable, search for split minimizing p-value
#if (!rnd.sel) {
# xselect <- which.min(p) # not randomize
#} else {
# xselect <- resample(which(p == min(p, na.rm = T)), 1) # randomize
#}
xselect <- n.var
if(length(which(p[2,] == min(p[2,], na.rm = T)))>1){
xselect <- which.max(p[1,])+1
}else{
xselect <- which.min(p[2,])+1
}
#print( c( round(minp,5), round(min(p),5), names(p)[xselect] ) )
x <- data[[xselect]]
if(is.list(x)){
if(is.fdata(x$fdata.est)) x1=x$coef[which(weights==1),]
}
# split into two groups minimizing entropy
if(is.factor(x)){
##setup all possible splits in two kid nodes
lev<-levels(x[drop = TRUE])
if(length(lev) == 2){
splitpoint <- lev[1]
}else{
comb <- do.call("c", lapply(1:(length(lev)-2),
function(x) combn(lev, x, simplify = FALSE)))
xlogp <- sapply(comb, function(q) mychisqtest(x%in%q, y))
splitpoint <- comb[[which.min(xlogp)]]
}
##split into two groups (setting groups that do not occur to NA)
splitindex <- !(levels(data[[xselect]])%in%splitpoint)
splitindex[!(levels(data[[xselect]])%in%lev)] <- NA_integer_
splitindex <- splitindex-min(splitindex, na.rm=TRUE)+1L
}
if(is.numeric(x)){
splitindex <- s.opt(response, x[which(weights==1)], rnd.splt)
}
if(is.list(x)){
if(is.fdata(x$fdata.est)){
bselect <- 1:dim(x1)[2]
p1 <- c()
p1 <- sapply( bselect, function(i) mytest2( x1[,i], y, R = R) )
colnames(p1) <- colnames(x1)
if(length(which(p1[2,] == min(p1[2,], na.rm = T))) > 1){
bselect <- which.max(p1[1,])
}else{
bselect <- which.min(p1[2,])
}
splitindex <- s.opt(y=y, X=x1[, bselect], rnd.splt)
}
}
# return split as partysplit object
if(is.numeric(x)){
return( partysplit( varid = as.integer(xselect),
breaks = splitindex,
info = list( p.value = 1 - (1 - p)^sum( !is.na(p) ) )
) )
}
if(is.factor(x)){
return(partysplit(varid = as.integer(xselect),
index = splitindex,
info = list( p.value = 1 - (1 - p)^sum( !is.na(p) ) )
) )
}
if(is.list(x)){
if(is.fdata(x$fdata.est)){
return(list(sp = partysplit(varid = as.integer(bselect),
breaks = splitindex,
info=list( p.value = 1 - (1 - p[2,])^sum( !is.na(p[2,]) ) )
),varselect = xselect ))
}
}
}
####
s.opt <- function(y, X, rnd = T){
# find the split minimizing entropy
s <- sort(X)
obj <- c()
for(i in 1:length(s)){
data1 <- y[ which(X < s[i]) ]
data2 <- y[ which(X >= s[i]) ]
freqs1 <- table(data1)/length(data1)
freqs2 <- table(data2)/length(data2)
e1 <- entropy.empirical( freqs1, unit = "log2")
e2 <- entropy.empirical( freqs2, unit = "log2")
obj[i] = ( length(data1)*e1 + length(data2)*e2 )/length(y)
}
#if (!rnd){
# return( s[ which.min(obj) ] )
#} else {
# return( s[ resample( which(obj == min(obj, na.rm = T)), 1) ] )
#}
return( s[ which.min(obj) ] )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.